If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=-16H^2+40H+108
We move all terms to the left:
-(-16H^2+40H+108)=0
We get rid of parentheses
16H^2-40H-108=0
a = 16; b = -40; c = -108;
Δ = b2-4ac
Δ = -402-4·16·(-108)
Δ = 8512
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8512}=\sqrt{64*133}=\sqrt{64}*\sqrt{133}=8\sqrt{133}$$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-8\sqrt{133}}{2*16}=\frac{40-8\sqrt{133}}{32} $$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+8\sqrt{133}}{2*16}=\frac{40+8\sqrt{133}}{32} $
| 1/2=-1/6(g-9/8) | | -6(6b+1)+(25b-3)=0 | | x^2-8x-89=7 | | 2x/3-17=x-34 | | x-7=13+x | | (4y+16)+64=360 | | 7+2(x-3)=4x-2 | | 2x+8.9*(100-x)=2.9 | | 8^p=19 | | -11=0.9d-2 | | -11=0.9d-2d= | | 4(4w+4)/3=-5 | | (2x+3)(5x-7)=-21 | | X/5-x/2=15 | | 7(3-2y)3y=y+4(y-4) | | (x-11)(x+5)+63=0 | | 2x+6x-4.5x=0 | | 1/2(x+1)-2/3(x+3)=2 | | 7z+52+z+64=180 | | 2/3(3q+6)=68 | | 50x+5+10=700 | | 4(x=3) | | 4b=b-21 | | 15x+5=115 | | 5•x+487=3777 | | -3k+(-8)=-8 | | 16=-4p | | -5p+12=20 | | 7c-12=-4 | | x^2-x+12/x+3=-7 | | 6x-(-10)=3 | | 3x+24=89 |